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Motivation

CGKN: Overview

Summary of Numerical Results

For complex dynamical systems (nonlinear, chaotic, multi-scale, 
turbulent, intermittent, non-Gaussian), to: 
1. Make predictions (models) 
2. Use observations to improve predictions (data assimilation; DA)

CGKN for NSE

• Observed states: 8x8 out of 64x64 (uniformly distributed); unobserved states: 120 out 
of 128; observational noise ~                    

• Encoder                                       decoder 

Navier-Stokes Equations (2-D turbulent PDE)

Sparse obs Full field

Conditional Gaussian Ksoopman Network (CGKN):
A unified framework of SciML and DA, to learn surrogate models 
that performs efficient prediction and DA for nonlinear partially 
observed dynamical systems.

CGKN: Methodology
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Discrete Dynamical System
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Generalized Koopman Theory
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Data Assimilation
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(Efficient Analytical Formulae)

ψ

μn
v

vn+1

ψ(μn
v) = μn

[vn+1]
un+1

1State Forecast un+1
2ψ(vn+1)=

CGKN for VBE

State Forecast

Data Assimilation

CGKN for KSE

Data Assimilation

State Forecast

• Observed states: 8 out of 128 (uniformly distributed); unobserved states: 120 out of 
128; with observational noise ~                    

• Encoder                                decoder 

Kuramoto-Sivashinsky Equation (1-D Chaotic PDE)

#θφ = 18422 #θψ = 18530 #θη = 37956

State Forecast

Data Assimilation

Computational efficiency compared to EnKF:
~ 600 times faster for VBE; ~ 125 times faster for KSE; ~ 300 times faster for NSE;

• Physical model: 

• Based on governing equations derived from first principles (interpretable) 

• May require strong assumptions; Usually computationally expensive (e.g., NWP) 

• Data-driven model:  

• Works with governing equations unknown (but lack of interpretability)  

• Computational efficient; Needs a large amount of data (may be sparse and noisy 
in reality) 

• Data assimilation is especially useful when data is sparse and noisy 

• Combing data with existing models, DA can recover complete data, with reduced 
uncertainty 

• As new observations become available, DA can utilize this information to 
improve real-time predictions
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A discrete-time CGKN is developed to learn surrogate models for efficient state forecasting and DA for high-dimensional, partially observed, complex dynamical systems. CGKN leverages Koopman embedding to construct latent variables representing 
unobserved states, whose dynamics are conditionally linear given the observed states. This structure yields a conditional Gaussian system with closed-form DA formulae, which are embedded into the learning process as inductive bias, resulting in a unified 
framework that integrates scientific machine learning (SciML) with DA. Beyond DA, the CGKN framework exemplifies how SciML models can be designed to seamlessly interface with outer-loop applications such as design optimization, inverse problems, 
and optimal control.


