

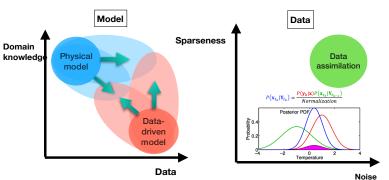
CGKN: A Deep Learning Digital Twins Framework for Stochastic Modeling, Forecast, and Data Assimilation

Chuanqi Chen, **Zhongrui Wang**, Nan Chen, Jin-long Wu
Department of Mechanical Engineering & Department of Mathematics, University of Wisconsin-Madison

Motivation

For complex dynamical systems (nonlinear, chaotic, multi-scale, turbulent, intermittent, non-Gaussian), to:

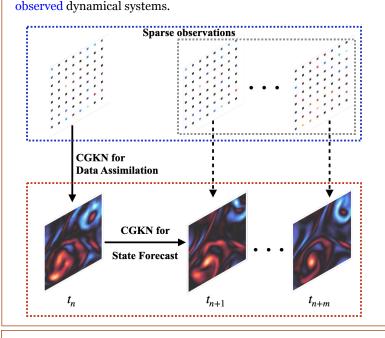
- 1. Make predictions (models)
- 2. Use observations to improve predictions (data assimilation; DA)



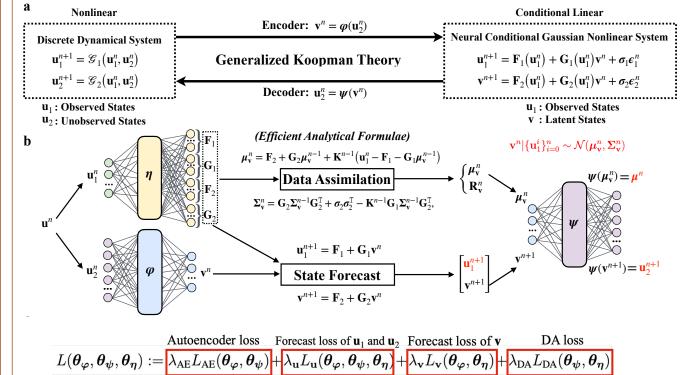
- Physical model
- Based on governing equations derived from first principles (interpretable)
- May require strong assumptions; Usually computationally expensive (e.g., NWP)
- Data-driven model:
- Works with governing equations unknown (but lack of interpretability)
- Computational efficient; Needs a large amount of data (may be sparse and noisy in reality)
- Data assimilation is especially useful when data is sparse and noisy
- Combing data with existing models, DA can recover complete data, with reduced
- As new observations become available, DA can utilize this information to

CGKN: Overview

Conditional Gaussian Ksoopman Network (CGKN): A unified framework of SciML and DA, to learn surrogate models that performs efficient prediction and DA for nonlinear partially



CGKN: Methodology

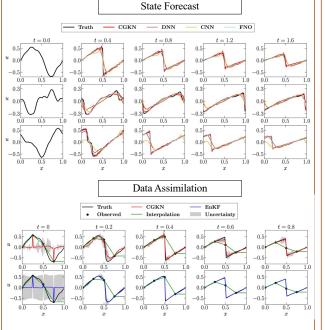


CGKN for VBE

Viscous Burgers' equation (shock waves)

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} + \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in [0, L_x] \quad t \in [0, L_t]$$

- Observed states: 4 out of 64 (uniformly distributed); unobserved states: 60 out of 64
- Encoder $\varphi : \mathbb{R}^{60} \to \mathbb{R}^{10}$, decoder $\psi : \mathbb{R}^{10} \to \mathbb{R}^{60}$

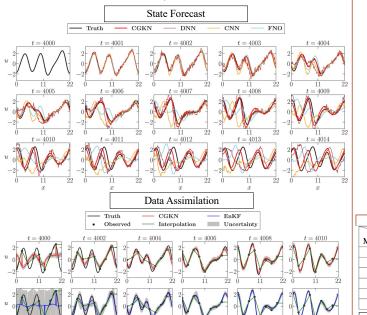


CGKN for KSE

Kuramoto-Sivashinsky Equation (1-D Chaotic PDE)

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^4 u}{\partial x^4}, \quad x \in [0, L_x] \quad t \in [0, L_t]$$

- Observed states: 8 out of 128 (uniformly distributed); unobserved states: 120 out of
- Encoder $\varphi : \mathbb{R}^{120} \rightarrow \mathbb{R}^{12}$ decoder $\psi : \mathbb{R}^{12} \rightarrow \mathbb{R}^{120}$

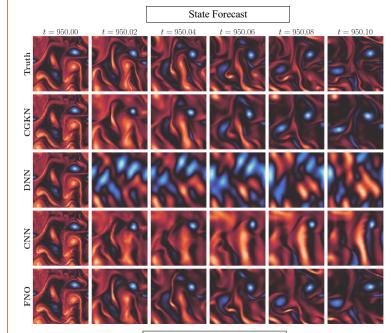


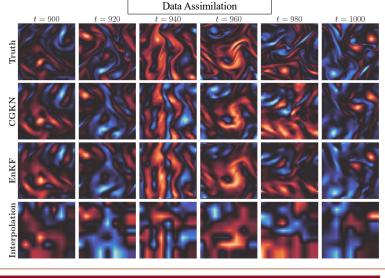
CGKN for NSE

Navier-Stokes Equations (2-D turbulent PDE)

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} &= -\mathbf{u} \cdot \nabla \mathbf{u} + \nu \nabla^2 \mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{f}, & \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^2 \\ \mathbf{v} \cdot \mathbf{u} &= 0, & t \in [0,L_t] \end{split}$$

- Observed states: 8x8 out of 64x64 (uniformly distributed); unobserved states: 120 out of 128; observational noise $\sim \mathcal{N}(0, 2.5^2)$
- Encoder $\varphi: \mathbb{R}^{64 \times 64} \mapsto \mathbb{R}^{16 \times 16}$ decoder $\psi: \mathbb{R}^{16 \times l6} \mapsto \mathbb{R}^{64 \times 64}$





Summary of Numerical Results

MSEs; one-step error for forecast/time averaged error for DA Viscous Burgers Equation | Kuramoto-Sivashinsky Equation Navier-Stokes Equations Forecast Error DA Error Forecast Error DA Error Forecast Error CGKN 7.5037e-04 2.4927e-02 EnKF 5.8125e-04 2 4882e-02 6.9010e+01 Interpolation 1.3514e-02 4.3097e-01 1.2844e+02 DNN 6.4816e-03 4.7332e-02 .0936e+02 2.3727e-03 3.0600e+01 FNO 5.4859e-03 1.7129e+01

600 times faster for VBE; ~ 125 times faster for KSE; ~ 300 times faster for NSE

A discrete-time CGKN is developed to learn surrogate models for efficient state forecasting and DA for high-dimensional, partially observed, complex dynamical systems. CGKN leverages Koopman embedding to construct latent variables representing unobserved states, whose dynamics are conditionally linear given the observed states. This structure yields a conditional Gaussian system with closed-form DA formulae, which are embedded into the learning process as inductive bias, resulting in a unified framework that integrates scientific machine learning (SciML) with DA. Beyond DA, the CGKN framework exemplifies how SciML models can be designed to seamlessly interface with outer-loop applications such as design optimization, inverse problems, and optimal control.