BACKGROUND

State estimation of a multi-layer flow field (e.g., ocean) with surface observations is a challenging. One
widely used method that linearly connects different layers with a regression model can be inaccurate
when the flow is highly turbulent|1].

MULTI-LAYER FLOW WITH SURFACE OBSERVATIONS: A GENERAL FORM
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where x; = (xy, yg)T is the fth tracer’s displacement. v = (..., v;, .. .)T is the planar flow velocities of

[ layers. L and D are linear dispersion and dissipation. B(v, V) is a nonlinear quadratic form. F is a
constant forcing. W is the Gaussian white noise W multiplied by the noise strength matrix 2.

CONDITIONAL (FAUSSIAN NONLINEAR SYSTEM

The conditional Gaussian nonlinear system (CGNS) is very common in geophysical flows:

du W
du W

where uy € CN1 ares observed variables and u € CN2 are hidden variables.

= Nonlinear & Non-Gaussian: A, ag, A{, a1, X1, 29 can nonlinearly depend on uy. Thus, the
CGNS can be highly nonlinear, the marginal distributions of uj, us can be strongly non-Gaussian.

= Conditional Gaussian: Given an observed trajectory of uy, the posterior of uy is Gaussian:

u(t)[ui(s < 8) ~ N (pa(t), Ra(t)), (3)

with mean po(t) and covariance Ro(t) solvable through the analytic formulae
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Thanks to this blessing of CGNS, the conditional Gaussian data assimilation (CGDA) can
solve the posterior mean and covariance exactly and efficiently based on (4).

MULTI-STEP DA FOR MULTI-LAYER FLOW
)T

Consider a two-layer flow v = (v, vg)* with surface tracer observations x(s). We aim for the posterior

Py ()X (s).s<t (VH{X(8)}s<t) (5)
I. The first DA step solves the surface-layer flow posterior P(v1|{x(s)} sgt) given tracer obs.
2. Sample from P(vi]|{x(s)} sgt) to get {Vgn)}, as pseudo-observations of the upper-layer flow.

3. The second DA step solves the lower-layer flow posterior P(V2|V§n), {x(s)}4<;) for each
sample. The ultimate posterior that combines Ng samples is

P(vol{x(s)} <) :/ P(v1,val{x(s)}s<t)dv1 (marginal probability)
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— / P(vz\vl, {X(S)}Sgt)P(Vﬂ{X(S)}SSt) dvi (conditional probability)
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v, )
~ Z P(VQ‘Vgn), {x(8)}4<¢) (Monte — Carlo estimation)
S -

= S Z P(VQ‘{ng(S)}SSt, {x(s)}s<t) (if conditioned on trajectory).
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ONE-sTEP CGDA

Comparing the flow-observation system (1) to CGNS (2), we can fit (1) into the CGNS framework by
dropping the quadratic term B(v,v). The one-step CGDA adopts a linear stochastic flow model and
perform CGDA to all layers at once. 1t is equivalent to the previous work using linear regression|1].

MuLTI-STEP CGDA

1. The one-step CGDA can work as the first step of multi-step CGDA to recover the surface-layer flow.
2. Sample from the upper-layer flow posterior to get pseudo-observations.

3. At the second DA step, we drop nonlinear terms of the lower-layer flow, but preserve nonlinear

terms of the upper-layer flow, to fit a CG nonlinear stochastic flow model, and perform CGDA
to solve the lower-layer posterior.

4. Sequentially apply step 2 and 3 top-down till to the bottom.

PRrROS OF MuLTI-STEP CGDA

The one-step CGDA that completely linearizes the flow model tends to be an aggressive simplification
in most real-world applications. As the flow model contributes a major part of the flow-observation
system’s complexity, and nonlinearities contribute a major part of the flow model’s complexity.

The multi-step CGDA bypasses the oversimplification by adopting Monte-Carlo estimation, and
performing CGDA layer by layer. It allows

= analytic formulae to solve the posterior mean and covariance

= preserves the nonlineary of the surface observation process at the first DA step, and
the nonlinearity of the upper-layer flow at the subsequent DA steps

* non-Gaussian lower-layer posterior, which is given by a mixture of Gaussians
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APPLICATION TO TWO-LAYER QG SYSTEM

(a) upper layer PV: truth

lower layer PV: truth
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Snapshots of the potential vorticity field

Number of time steps N; =205000 0.45 4 0.40 .
Time step dr =0.002 0.40 0.38 (b)
Domain [, 7)?
Grid points (Fourier modes) Kx =K, =128 N 0.35 1 . 0.36
s s
Spectral truncation radius r=16 W .30 - W 34
= =
Observation noise strength ox =0y =0.1 = -
0.25 0.32
Number of tracers L =256
Ensemble size N; =16 0.20 + 0.30
—&— one-step —&— one-step
Deformation wavenumber kg =10 - multi-step —=— multi-step
0.15 1 0.28 -
Rossby parameter p=22 16 64 256 - 2 4 8 16
Zonal mean flow Uy=0 Number of Tracers Number of Ensemble Members
Zonal shear flow U=1 Sensitivities to the (a) number of tracers, and (b) ensemble size
Ekman damping k=9
Hyperviscosity v=10"12 | o one-step —e— one-step
Topography h=40(cos(x)+2cos(2y)) 107 3 —m— multi-step 60 1 —8— multi-step
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Table 1.Default experiment parameters
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Regime p=22 p=111 oo .
One-step CGDA 0.400 0.137 ]
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Multi-step CGDA 0.291 0.113 101 3
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Multi-step CGDA /w constR  0.303
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Table 2. Time mean RMSEs of DA methods in turbulent 21 22 23 24 25 2 4 8 O
regime (f = 22) and less turbulent regime (f = 111). Truncation radius Ensemble size

“/w constR” means with constant covariance.

FUTURE WORK

Parameter estimation: A better state estimation usually also leads to a better parameter estimation.
Constant forcing parameters, e.g., topography, can be estimated using the multi-step CG smoother.
Applications include recovering the ocean bottom topography based on tracers.
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Computational cost varying with (a) spectral truncation radius, and (b) ensemble size
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