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Background

State estimation of a multi-layer flow field (e.g., ocean) with surface observations is a challenging. One
widely used method that linearly connects different layers with a regression model can be inaccurate
when the flow is highly turbulent[1].

Multi-layer flow with surface observations: A general form
dx`

dt
= v1(x`, t) + ΣxẆ`, ` = 1, . . . , L (1a)

dv
dt

= (L + D)v + B(v, v) + F + ΣvẆv, (1b)

where x` = (x`, y`)T is the `th tracer’s displacement. v = (. . . , vi, . . .)T is the planar flow velocities of
I layers. L and D are linear dispersion and dissipation. B(v, v) is a nonlinear quadratic form. F is a
constant forcing. ΣẆ is the Gaussian white noise Ẇ multiplied by the noise strength matrix Σ.

Conditional Gaussian nonlinear system
The conditional Gaussian nonlinear system (CGNS) is very common in geophysical flows:

du1
dt

= A0(u1, t) + A1(u1, t)u2 + Σ1(u1, t)Ẇ1, (2a)
du2
dt

= a0(u1, t) + a1(u1, t)u2 + Σ2(u1, t)Ẇ2, (2b)

where u1 ∈ CN1 ares observed variables and u2 ∈ CN2 are hidden variables.
Nonlinear & Non-Gaussian: A0, a0, A1, a1, Σ1, Σ2 can nonlinearly depend on u1. Thus, the
CGNS can be highly nonlinear, the marginal distributions of u1, u2 can be strongly non-Gaussian.
Conditional Gaussian: Given an observed trajectory of u1, the posterior of u2 is Gaussian:

u2(t)|u1(s ≤ t) ∼ N
(
µ2(t), R2(t)

)
, (3)

with mean µ2(t) and covariance R2(t) solvable through the analytic formulae
dµ2
dt

= (a0 + a1µ2) + R2A∗
1(Σ1Σ∗

1)−1
(

du1
dt

− (A0 + A1µ2)
)

, (4a)

dR2
dt

= a1R2 + R2a∗
1 + Σ2Σ∗

2 − (R2A∗
1)(Σ1Σ∗

1)−1(A1R2). (4b)

Thanks to this blessing of CGNS, the conditional Gaussian data assimilation (CGDA) can
solve the posterior mean and covariance exactly and efficiently based on (4).

Multi-step DA for multi-layer flow
Consider a two-layer flow v = (v1, v2)T with surface tracer observations x(s). We aim for the posterior

PV(t)|X(s),s≤t

(
v|{x(s)}s≤t

)
, (5)

1. The first DA step solves the surface-layer flow posterior P
(
v1|{x(s)}s≤t

)
given tracer obs.

2. Sample from P
(
v1|{x(s)}s≤t

)
to get {v(n)

1 }, as pseudo-observations of the upper-layer flow.

3. The second DA step solves the lower-layer flow posterior P
(
v2|v

(n)
1 , {x(s)}s≤t

)
for each

sample. The ultimate posterior that combines Ns samples is

P
(
v2|{x(s)}s≤t

)
=
∫

v1
P
(
v1, v2|{x(s)}s≤t

)
dv1 (marginal probability)

=
∫

v1
P
(
v2|v1, {x(s)}s≤t

)
P
(
v1|{x(s)}s≤t

)
dv1 (conditional probability)

≈ 1
Ns

Ns∑
n

P
(
v2|v

(n)
1 , {x(s)}s≤t

)
(Monte − Carlo estimation)

≈ 1
Ns

Ns∑
n

P
(
v2|{v(n)

1 (s)}s≤t, {x(s)}s≤t

)
(if conditioned on trajectory).

(6)

For flow with more than 2 layers, sequentially apply step 2 and 3 from top to bottom.

Multi-step CGDA

One-step CGDA

Comparing the flow-observation system (1) to CGNS (2), we can fit (1) into the CGNS framework by
dropping the quadratic term B(v, v). The one-step CGDA adopts a linear stochastic flow model and
perform CGDA to all layers at once. It is equivalent to the previous work using linear regression[1].

Multi-step CGDA

1. The one-step CGDA can work as the first step of multi-step CGDA to recover the surface-layer flow.
2. Sample from the upper-layer flow posterior to get pseudo-observations.
3. At the second DA step, we drop nonlinear terms of the lower-layer flow, but preserve nonlinear

terms of the upper-layer flow, to fit a CG nonlinear stochastic flow model, and perform CGDA
to solve the lower-layer posterior.

4. Sequentially apply step 2 and 3 top-down till to the bottom.

Pros of Multi-step CGDA

The one-step CGDA that completely linearizes the flow model tends to be an aggressive simplification
in most real-world applications. As the flow model contributes a major part of the flow-observation
system’s complexity, and nonlinearities contribute a major part of the flow model’s complexity.
The multi-step CGDA bypasses the oversimplification by adopting Monte-Carlo estimation, and
performing CGDA layer by layer. It allows

analytic formulae to solve the posterior mean and covariance
preserves the nonlineary of the surface observation process at the first DA step, and
the nonlinearity of the upper-layer flow at the subsequent DA steps
non-Gaussian lower-layer posterior, which is given by a mixture of Gaussians

Application to two-layer QG system

Future work

Parameter estimation: A better state estimation usually also leads to a better parameter estimation.
Constant forcing parameters, e.g., topography, can be estimated using the multi-step CG smoother.
Applications include recovering the ocean bottom topography based on tracers.
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